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Abstract

This paper discusses vibration damping using four-layer sandwich beam. The present work deals with the analysis of

vibration of the primary system having a mass and rubber spring mounted on a four-layer viscoelastic simply supported

symmetrically arranged sandwich beam. The equation of motion of a general four-layer with alternate elastic layer and

viscoelastic layer simply supported sandwich beam is first derived using the method of equilibrium of forces and beam

theory. The above differential equation has been solved for harmonically force excited sandwich beam by applying suitable

boundary conditions to get the impedance of the sandwich beam. This impedance is then combined with the impedance of

the primary system to obtain the expression for the response of harmonically excited mass and then the expression for

transmissibility is obtained. The effectiveness of geometrical and physical parameters in minimizing response and

transmissibility for central mounting of the primary system is evaluated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

There is a large body of literature on damping in composite materials where many reseachers have evaluated
a material’s specific damping capacity. Baburaj and Matswzaki [1] and the references therein give an account
of research in this area. A more extensive list of references is given in Adhikari [2]. Sandwich structures have
been the subject of many investigations. A large amount of literature has been devoted to the development of
theories for conventional sandwich structures and to the study of their static and dynamic behavior. A detailed
review of this work is given in the paper written by Noor et al. [3]. The free vibration analysis of plates made
up of two elastic layers with a thin viscoelastic damping layer was first investigated by Cupial and Niziol [4].

Sandwich structures with elastic faces and viscoelastic cores are nowadays of importance in aircraft and
spacecraft structures. They are being used more and more where high strength and low weights are desired
and also where damping is required to dissipate vibrational energy. Situations also arise when precision
instruments or vibrating machines are installed on such structures with flexible mounts, and attempts are being
made to provide effective vibration isolation by the use of flexible mounts in conjunction with viscoelastic
sandwich structures [5]. The arrangement can provide a sufficient amount of damping to combat the menace
of resonance. At higher frequencies even very small amplitudes of vibration can give rise to appreciable noise
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

Aj complex constants
b width of beam
Bj Aj/Fo, j ¼ 1,2,y, 6
d1 distance between neutral axes of first and

third elastic layers ¼ h1+h2
d2 distance between neutral axis of third

elastic layer and end of the fourth plastic
layer

Dt overall bending stiffness of elastic layers
about their neutral axes

Ej Young’s modulus of jth layer
f frequency in rad/s
fc frequency in cps
F exciting force
F0 exciting force at junction point
F1 force transmitted to support
G in-phase shear modulus of viscoelastic

material
G* complex shear modulus of viscoelastic

material ¼ G(1+ib)
g shear parameter ¼ G*/Eh1h2
hj thickness of jth layer
i

ffiffiffiffiffiffiffi
�1
p

K dynamic stiffness of rubber material
l length of beam
m main vibrating mass
M total bending moment

p transverse loading per unit length of
beam

Pj longitudinal forces in jth layer
T transmissibility
t time variable
uj longitudinal displacement of neutral axes

of jth layers
u longitudinal displacement of any point in

the core
W transverse displacement of beam, func-

tion of x

w transverse displacement of beam, func-
tion of x and t

y3 displacement response of primary sys-
tem, function of x and t

Y1 geometrical parameter ¼ Eh1bd1
2/Dt

Y2 geometrical parameter ¼ Eh1bd2
2/Dt

Y geometrical parameter ¼ Eh1bd2/Dt

Y3 displacement response of primary sys-
tem, function of x

Z impedance of sandwich beam
Zeq equivalent impedance of the system using

sandwich beam
m mass of sandwich beam per unit length
g, g0 shear strain
t, t0 shear stress
b loss factor of core material
d loss factor of rubber
sj complex roots of characteristic Eq. (31)
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levels, and this situation occurs in many machines. It may then be necessary to reduce the vibration of the
machinery by the use of damping materials.

In this paper the problem of a primary vibration excitation system in contact with a four-layer sandwich
beam is considered. Many investigators [6–13] have reported work on the analysis of flexural vibrations of
sandwich beams. To simplify the analysis these investigators have taken into consideration only the strain
energy due to bending and longitudinal deformation of the elastic faces and that due to shear deformation of
the viscoelastic layer. In the work reported here, both the vibration response of a flexibly supported mass
attached to a four-layer sandwich beam at its center and the force transmissibility provided by the complete
system have been computed, as both these aspects are important from the point of view of vibration control.

The equation of motion of bending vibration of a sandwich beam is derived and used as the starting point.
The dynamic stiffness of the beam with respect to the junction point is first determined. This is combined with
that of the primary system to obtain the resultant dynamic stiffness, which in turn is used for finding the
expressions for the response of the primary system and for the transmissibility.
2. Problem formulation

Fig. 1 shows the model system, which consists of a flexibly supported excitation system attached to the
center of a simply supported four-layered sandwich beam consisting of alternate layers of an elastic and stiff
material such as metal and a high damping viscoelastic material such as plastic. The vibrating excitation
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Fig. 2. Free body diagram.
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Fig. 1. Primary vibratory system mounted on four-layer sandwich beam.
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system, here designated as the primary system, consists of a mass and rubber spring whose dynamic
characteristic is defined by the equation K* ¼ K(1+id), where K and d are the stiffness and the loss factor,
respectively. A four-layered sandwich beam has elastic layers of thickness h1 and plastic layers of thickness h2.
The elastic layers have Young’s modulus E. The plastic layers have shear modulus G(1+ib), b being the loss
factor of the viscoelastic material. Fig. 2 shows the free body diagrams of the primary system and the sandwich
beam. The concentrated harmonic force F0 is acting on the beam. The sandwich beam is analyzed for its
dynamic stiffness with respect to F0.
3. The equation of a four-layered sandwich beam

The differential equation of longitudinal displacement has previously been derived by Di Taranto [7]. The
analysis we present now leads to the equation of transverse displacement.

Geometry of a four-layered sandwich beam of width b is shown in Fig. 3. The analysis is developed for a
model of symmetric layers composed of two identical elastic layers of thickness h1 with Young’s modulus E

and two identical viscoelastic layers of thickness h2 with shear modulus G* ¼ G (1+ib). The deflected face of
the beam is shown in Fig. 4.
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It will be assumed that shear strains in the elastic plates are negligible, and that longitudinal direct stresses in
the plastic plates are negligible. Transverse direct strains in both plastic plates and elastic plates are also
neglected, so that the transverse displacements w of all points on a cross-section xx are equal.

The longitudinal x-wise displacements of the mid-planes of the elastic plates are u1 and u3. The longitudinal
displacement component of any point in the viscoelastic layer is u.

Now the shear strain, g1, in the second layer, which is viscoelastic, is given by

g1 ¼
qw

qx
þ

qu

qy
(1)

Relative displacement of the two faces of the second layer in the longitudinal direction is

u1 � u3 þ h1
qw

qx

Hence,

qu

qy
¼

1

h2
ðu1 � u3Þ þ h1

qw

qx

� �
(2)
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Shear strain in fourth layer, which is also viscoelastic is given as

g2 ¼
qw

qx
þ

qu

qy
(3)

Relative displacement of the two faces of the fourth layer in the longitudinal direction is

u3 þ
h1

2

qw

qx

Hence,

qu

qy
¼

1

h2
u3 þ

h1

2

qw

qx

� �
(4)

Substituting Eq. (2) into Eq. (1) we get

g1 ¼
qw

qx
þ

u1 � u3

h2
þ

h1

h2

qw

qx

or

g1 ¼
u1 � u3

h2
þ

d1

h2

qw

qx
(5)

where d1 ¼ h1+h2.
Substituting Eq. (4) into Eq. (3) we get

g2 ¼
qw

qx
þ

u3

h2
þ

h1

2h2

qw

qx

or

g2 ¼
u3

h2
þ

d2

h2

qw

qx
(6)

where d2 ¼ h2+(h1/2).
The shear stress in the second layer is, therefore, given by

t1 ¼ Gng1 ¼ Gn d1

h2

qw

qx
þ

u1 � u3

h2

� �
(7)

The shear stress in the fourth layer is, therefore, given by

t2 ¼ Gng2 ¼ Gn d2

h2

qw

qx
þ

u3

h2

� �
(8)

At any section of the beam, the shear forces and bending moments are shown in Fig. 5. The shear force on
first face layer is

S1 ¼ D1
q3w

qx3
(9)

where D1 ¼ Ebh1
3/12.

The shear force on third face layer is

S3 ¼ D3
q3w

qx3
(10)

where D3 ¼ Ebh1
3/12.

The shear force S2 is associated with the second layer shear stress. This shear stress must be considered to
act uniformly between the mid-plane of first and third layers. Actually, it is constant over the depth of second
layer and varies linearly to zero across the thickness of first and third layers. Thus the shear is equivalent to be
uniform between the mid-planes of first and third layers.
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Hence,

S2 ¼ t1bd1 (11)

Similarly, the shear force S4 is associated with the fourth layer shear stress. This shear stress must be
considered to act uniformly between the mid-plane of the third layer.

Hence,

S4 ¼ t2bd2 (12)

The total shear forces is given by

S ¼ S1 � S2 þ S3 � S4 (13)

The minus sign is included because the direction of S2 and S4 (Fig. 5) is opposite to the direction of S1 and
S3.

Hence,

S ¼ D1
q3w
qx3
� t1bd1 þD3

q3w
qx3
� t2bd2

or

S ¼ ðD1 þD3Þ
q3w

qx3
� Gnbd1

d1

h2

qw

qx
þ

u1 � u3

h2

� �
� Gnbd2

d2

h2

qw

qx
þ

u3

h2

� �
(14)

Now the transverse loading, p, on the beam is related to S by p ¼ qS/qx. Hence, by differentiating Eq. (14),
putting D1+D3 ¼ Dt, and re-arranging, we obtain

p ¼ Dt

q4w
qx4
�

Gnbd2
1

h2

q2w

qx2
�

Gnbd1

h2

qu1

qx
�

qu3

qx

� �
�

Gnbd2
2

h2

q2w

qx2
�

Gnbd2

h2

qu3

qx
(15)

Let the net longitudinal forces in each of the face plates be denoted by P1 and P3. These forces have their
lines of action in the mid-planes of the face plates and are related to the longitudinal displacements by

P1 ¼ Ebh1
qu1

qx
; P3 ¼ Ebh1

qu3

qx
. (16)

Since there can be no resultant longitudinal force on the whole section, P1 ¼ P3
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or

Ebh1
qu1

qx
¼ �Ebh1

qu3

qx
(17)

Furthermore, considering the physical nature of the system and its displacements, it is obvious that we can
also write

Ebh1u1 ¼ �Ebh1u3 (18)

Eq. (15) can therefore be written in the alternative form

Dt
q4w
qx4
�

GnEh1bd2
1

Eh1h2

q2w
qx2
�

GnEh1bd2
2

Eh1h2

q2w

qx2
þ

2GnEh1bd2
1

Eh1h2d1

qu3

qx
�

GnEh1bd2
2

Eh1h2d2

qu3

qx
¼ p (19)

In subsequent equations, it is convenient to introduce the symbols

g ¼
Gn

Eh1h2
(20)

Y 1 ¼
Eh1bd2

1

Dt

(21)

and

Y 2 ¼
Eh1bd2

2

Dt

(22)

Using these in Eq. (19), we may re-arrange it into the form

q4w
qx4
� gY 1

q2w

qx2
� gY 2

q2w
qx2
þ

2gY 1

d1

qu3

qx
�

gY 2

d2

qu3

qx
¼

p

Dt

(23)

Next, consider the longitudinal equilibrium of a lengthwise element, dx, of the lower face plate (see Fig. 6). It
is evident that

dP3 ¼ �ðt1 þ t2Þbdx

or

qP3

qx
¼ �ðt1 þ t2Þb (24)

Substitute into this the expressions for t1, t2 and P3 from Eqs. (7), (8) and (16) and use Eq. (18) to eliminate
P3 P3 + δP3

δx

τbδx

τ'bδx

τbδx

Fig. 6. Longitudinal equilibrium of lower face element.
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u1. After re-arrangement, Eq. (24) then becomes

q2u3

qx2
� gu3 ¼ �gðd1 þ d2Þ

qw

qx
(25)

Eqs. (23) and (24) constitute the simplest pair of differential equations relating the displacements w and u3 to
the applied loading p. On eliminating u3 from this pair, a single sixth-order differential equation in w is
obtained, viz.

q6w
qx6
� g½1þ ðY 1 þ Y 2Þ�

q4w
qx4
þ g2½ðY 1 þ Y 2Þ �

2Y 1

d1
�

Y 2

d2

� �
ðd1 þ d2Þ�

q2w
qx2
¼

1

Dt

q2p

qx2
� pg

� �
(26)
4. Method of solution

For harmonic motion one can assume that

wðx; tÞ ¼W ðxÞ expðiftÞ (27)

Then the inertia force p has the form

p ¼ �mq2wðx; tÞ=qt2 ¼ �mWf 2 expðiftÞ (28)

Substitution of w and p from Eqs. (27) and (28) into Eq. (26) gives

d6W

dx6
� g½1þ ðY 1 þ Y 2Þ�

d4W

dx4
þ g2½ðY 1 þ Y 2Þ �

2Y 1

d1
�

Y 2

d2

� �
ðd1 þ d2Þ�

d2W

dx2
� s

d2W

dx2
þ sgW ¼ 0 (29)

which is a simple linear differential equation of the sixth order. Hence a solution of the form

W ðxÞ ¼ A expðsxÞ (30)

can be assumed. Substitution of Eq. (30) into Eq. (29) yields the characteristic equation

s6 � g½1þ ðY 1 þ Y 2Þ�s4 þ g2½ðY 1 þ Y 2Þ �
2Y 1

d1
�

Y 2

d2

� �
ðd1 þ d2Þ�s2 � ss2 þ sgW ¼ 0 (31)

which is cubic in s2. The roots can be exactly determined [14]. The method of finding roots is described in
Appendix A. The complete solution of differential equation (29) can then be expressed as

W ðxÞ ¼
X6
j¼1

Aj expðsjxÞ (32)

The constants Aj, j ¼ 1, 2,y, 6, are to be obtained by application of the boundary conditions of the beam.
4.1. Boundary conditions

The beam can be imagined to be comprised of identical halves, each of which is acted upon by one-half of
the applied force F0 at the junction point (Fig. 7). The center of the beam can now conveniently be taken as the
origin (Fig. 8).

The expressions for P1, M, S and u1 in terms of w and its derivatives are obtained as follows.
Since there can be no longitudinal force on both the face plates, i.e., the first face plate and the third face

plate.

Hence; P1 þ P3 ¼ 0 or P1 ¼ �P3

or Eh1b
qu1

qx
¼ �Eh1b

qu3

qx
(33)



ARTICLE IN PRESS

F0

 y , w

x , u

l/2

2

~

Fig. 7. Identical right half of sandwich beam.

 y , w

x , u

F0

wx = 0

z = wx = 0
F0~

Fig. 8. Driving point impedance.

B.P. Yadav / Journal of Sound and Vibration 317 (2008) 576–590584
Eqs. (15), (16) and (33) can readily be manipulated to show that

P1 ¼
Dt

gð2d1 � d2Þ

q4w

qx4
� gðY 1 þ Y 2Þ

q2w
qx2
�Ws

� �
(34)

The total bending moment, M, acting on the section can be split into four components analogous to those of
the shear force.

(a) and (b) moments M1 and M3 associated with the flexural stiffness D1 and D3 of the top and bottom face
plates, i.e.

M1 ¼ D1
q2w
qx2

; M3 ¼ D3
q2w
qx2

(35a, b)
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(c) Moment M2 associated with the equal and opposite forces, P1 and P3 which act along the mid-planes of
the face plates, i.e.

M2 ¼ P3d1 ¼ �
Dt

gð2d1 � d2Þ

q4w
qx4
� gðY 1 þ Y 2Þ

q2w

qx2
�Ws

� �
d1 (35c)

(d) Moment M4 associated with the force P3 which act along the mid-plane of the face plate, i.e.

M4 ¼ �P3d2 ¼
Dt

gð2d1 � d2Þ

q4w

qx4
� gðY 1 þ Y 2Þ

q2w
qx2
�Ws

� �
d2 (35d)

Then

M ¼M1 þM2 þM3 þM4

¼
Dtðd1 � d2Þ

gð2d1 � d2Þ

�q4w
qx4
þ g

ðY 1 þ Y 2Þðd1 � d2Þ þ ð2d1 � d2Þ

ðd1 � d2Þ

� �
q2w

qx2
þWs

� �
(36)

Since the total shear force, S, is given by qM/qx, it follows that

S ¼
Dtðd1 � d2Þ

gð2d1 � d2Þ
�
q5w
qx5
þ g

ðY 1 þ Y 2Þðd1 � d2Þ þ ð2d1 � d2Þ

ðd1 � d2Þ

� �
q3w

qx3
þ

qW

qx
s

� �
(37)

Now, P1 ¼ Eh1b(qu1/qx) hence from Eq. (34),

Dt

gð2d1 � d2Þ

q4w

qx4
� gðY 1 þ Y 2Þ

q2w
qx2
�Ws

� �
¼ Eh1b

qu1

qx

or

qu1

qx
¼

Dt

g2ð2d1 � d2ÞEh1b
g
q4w

qx4
� g2ðY 1 þ Y 2Þ

q2w

qx2
� gWs

� �
(38)

Eqs. (29) and (38) can readily be manipulated to show that

u1 ¼
Dt

g2Eh1bð2d1 � d2Þ

q5w

qx5
� gðY 1 þ Y 2Þ

q3w
qx3
� g2sþ 2g2Y 1

d1 þ d2

d1

� �
� g2Y 2

d1 þ d2

d2

� �� �
qw

qx

� �
(39)

The possible boundary conditions for a sandwich beam free at one end and simply supported at the other
end are as follows:

at x ¼ 0 (at center)
(i) shear force ¼ F0/2, (ii) slope ¼ dW/dx ¼ 0, (iii) u1 ¼ 0;

at x ¼ l/2 (at right end)
(iv) deflection ¼W ¼ 0, (v) bending moment ¼ 0, (vi) P1 ¼ �P3 ¼ 0.

Applying the above six boundary conditions, with the help of Eqs. (34) and (36)–(39), one obtains finally a
matrix equation of the form

½C�fBg ¼ fHg (40)

where [C] is a square matrix of dimension 6� 6. {B} and {H} are column matrices. The elements of these
matrices are, for j ¼ 1, 2,y, 6,

C1j ¼ � s5j þ g
ðY 1 þ Y 2Þðd1 � d2Þ þ ð2d1 � d2Þ

ðd1 � d2Þ

� �
s3j

C2j ¼ sj
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C3j ¼ sj5 � gðY 1 þ Y 2Þs3j

C4j ¼ exp sj

l

2

� �

C5j ¼ s2j exp sj

l

2

� �

C6j ¼ s4j exp sj

l

2

� �

Bj ¼ Aj=F0; Hj ¼
gð2d1 � d2Þ

2Dtðd1 � d2Þ
; j ¼ 1

¼ 0; ja1

Eq. (40) can be solved for B1, B2,y,B6. The beam solution then can be written as

W ðxÞ

F 0
¼
X6
j¼1

Bj expðsjxÞ

4.2. Response of primary system

With the solution for the beam thus obtained, the primary system with its spring and damper can now be
considered as attached to the center of the beam (see Figs. 1 and 2).

In Fig. 1 the beam can be replaced by its dynamic stiffness as shown in Figs. 9 and 10. The dynamic stiffness
of the beam at the junction point, which may be defined as the ratio of force to displacement is given by

Z ¼ F 0=W ð0Þ ¼ 1

,X6
j¼1

Bj (41)

The equivalent dynamic stiffness of the system (see Fig. 10) is given by

Zeq ¼ 1

, X6
j¼1

Bj þ
1

Kð1þ idÞ

( )
(42)

The equation of motion for the system as shown in Fig. 10 is

m €y1 þ Zeqy1 ¼ F expðiftÞ (43)

Since the motion is harmonic, y1 may be assumed to be of the form

y1 ¼ Y 1 expðiftÞ (44)
m Fy3

K (1 + iδ)

z
Beam impedance

Rubber impedance

~

Fig. 9. System with rubber impedance and beam impedance.
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Substituting Eq. (44) in Eq. (42) gives

Y 1=F ¼ 1=ð�mf 2
þ ZeqÞ (45)

Combining Eqs. (42) and (45) then yields

Y 1=F ¼
X6
j¼1

Bj þ
1

Kð1þ idÞ

( ),
�mf 2

X6
j¼1

Bj �
mf 2

Kð1þ idÞ
þ 1

( )
(46)

which is the response of the primary system to an exciting force of unit amplitude.

4.3. Transmissibility

With reference to Fig. 10 the exciting force at the junction of the beam and the primary system can be
expressed in the form

F 0=F ¼ Zeq=ð�mf 2
þ ZeqÞ (47)

From Eq. (37) for the shear force at any section of the beam, the right-hand support force F1 can be
obtained by substituting Eq. (32) into it and putting x ¼ l/2. This gives

F1

F0
¼

Dtðd1 � d2Þ

gð2d1 � d2Þ

X6
j¼1

�s5j þ g
ðY 1 þ Y 2Þðd1 � d2Þ þ ð2d1 � d2Þ

ðd1 � d2Þ

� �
s3j þ ðmf 2=DtÞsj

� �
Bj expðsj l=2Þ

� �
(48)

The transmissibility, which may be defined as the ratio of the total dynamic force transmitted at the end
support to the impressed force [15], is given by

T ¼ 2F1=F (49)

Combining Eqs. (47)–(49), and simplifying, finally yields

T ¼

2
Dtðd1 � d2Þ

gð2d1 � d2Þ

P6
j¼1

�s5j þ g
ðY 1 þ Y 2Þðd1 � d2Þ þ ð2d1 � d2Þ

ðd1 � d2Þ

� �
s3j þ

mf 2

Dt

� �
sj

� �
Bj expðsj l=2Þ

� �

�mf 2P6
j¼1

Bj �
mf 2

Kð1þ idÞ
þ 1

" # (50)

5. Results and discussion

Theoretical results deduced from Eqs. (46) and (50) are plotted in Figs. 11 and 12. In each case the
response and transmissibility have been plotted against the frequency. Figs. 11 and 12 show respectively plots
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of the theoretical curves representing the variation of the response of the primary system and the
variation of the transmissibility provided by the complete system with frequency. The beam used
is a MS-PVC–MS-PVC sandwich beam. Young’s modulus of M.S. ¼ 1.97� 105MPa. The other
parameters were h1 ¼ 1mm, h2 ¼ 10mm, l ¼ 500mm and b ¼ 80mm. The dynamic properties of rubber
and PVC were taken from experimentally obtained values [16,17] and these are given in Appendix B.
The main mass was taken as 1.80 kg. It is observed from Figs. 11 and 12 that the response |Y3/F| and
transmissibility |T| decrease as the frequency (cps) increases. The rate of decrease is slow for higher values of
frequency (cps).
6. Conclusions

It can be concluded that a four-layered sandwich beam having a configuration symmetrical with respect to
both geometrical and physical parameters provides a minimum response to the primary system as well as
minimum transmissibility of the excitation force to the support. Further it is found that response and
transmissibility decrease as the frequency (cps) increases. But the rate of decrease is slow for higher values of
frequency (cps).
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Appendix A. Expressions for roots of Eq. (31)

Substituting s2 ¼ R in Eq. (31) gives

R3 þ a1R2 þ a2Rþ a3 ¼ 0 (A.1)

a1 ¼ � gð1þ Y 1 þ Y 2Þ

a2 ¼ g2ðY 1 þ Y 2Þ � g2 2Y 1

d1
�

Y 2

d2

� �
ðd1 þ d2Þ � mf 2=Dt

a3 ¼ ðmf 2=DtÞg

with R ¼ X1�(a1/3), Eq. (A.1) becomes

X 3 þ 3a1X þ 2b1 ¼ 0

3a1 ¼ ð�a21=3Þ; 2b1 ¼ ð2=27Þa31 � ða1a2=3Þ þ a3
(A.2)

Eq. (A.2) is a standard form cubic equation [14]. The roots are:

X 1 ¼ U þ V ; X 2 ¼ �1U þ �2V ; X 3 ¼ �2U þ �1V (A.32A.5)

U ¼ �b1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3
1 þ b2

1

q� �1=3

; V ¼ �b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3
1 þ b2

1

q� �1=3

; �1;2 ¼ �
1

2
� i

ffiffiffi
3
p

2
(A.62A.8)

The roots of Eq. (A.1) are

R1 ¼ U þ V � a1=3; R2 ¼ �1U þ �2V � a1=3; R3 ¼ �2U þ �1V � a1=3 (A.92A.11)

Hence the roots of Eq. (31) are

s1 ¼
ffiffiffiffiffiffi
R1

p
; s2 ¼ �s1; s3 ¼

ffiffiffiffiffiffi
R2

p
(A.122A.14)

s4 ¼ �s3; s5 ¼
ffiffiffiffiffiffi
R3

p
; s6 ¼ �s5 (A.152A.17)

Appendix B. Dynamic properties of rubber and PVC materials

Dynamic stiffness and loss factor of rubber [16] at 30 1C: K ¼ 850.0+28.3fc (N/cm), for fcp45Hz;
K ¼ 2500N/cm, fc445Hz; d ¼ 0.126

Shear modulus and loss factor of PVC [17] at 30 1C: G ¼ 420.0+2.5 fc (N/cm2) and b ¼ 0.24+0.00125fc for
fcp80Hz; G ¼ 570.0+0.667fc (N/cm2) and b ¼ 0.28+0.00075fc for fc480Hz.
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